

Mitigation actions to improve environmental performance in dairy farms

Ph.D. Federico Froldi

Università Cattolica del Sacro Cuore

Piacenza - December 10th, 2021

Introduction: scope and objectives

Cattolica University is partner of the LIFE TTGG project with the departments of:

- Animal, Nutrition and Food Sciences DiANA
- Sustainable Food Process DiSTAS

Project objectives:

- Estimating the environmental impact of milk production at the farm gate
- Identification of environmental hotspots
- Actions proposal to mitigate the environmental performance of dairy farms
- Implementation of the Environmental Decision Support System EDSS

Sampling procedure

PEFCR equation to define the number of sub-populations: $N_{sp} = g * t * c = 60$

√ 4200 dairy farms -> sub-population of 1320 farms with known characteristics

✓ 65 dairy farms sampled ($\sqrt{number\ of\ dairy\ farms\ CTFGP}$)

g: (n. of geographical positions): Po Valley or Trentino Alto Adige -> 2

t: (n. of technologies/farming practices): statistical (percentiles) technology classes obtained on the size of the herd -> 10

c: (n. of production classes): average herd production -> 3

Inventory analysis

Dairy farms audit

Data analysis

Feeds purchase

In-farm feeds

Bedding materials

Energy

In-farm water use

Emissions -> barn

-> enteric

-> manure

Environmetal impact of milk production

Method EF 2.0 – weighted results without toxicity categories

25%

In-farm feeds

Impact category	1 kg Milk FPCM		
Climate change	32%		
Water scarcity	25%		
Eutrophication terrestrial	11%		
Land use	7%		
Total	75%		

- Feeds purchase
- Manure management
- Barn management
- Bedding materials

- In-farm feeds
- Enteric fermentations
- Energy
- In-farm water use

management

16%

Selected reduction measures

Mitigation action	Description			
Management and distribution of livestock manure and distribution of mineral fertlizers	 Low emissions manure storage systems Best agricultural practices for manure spreading Best agricultural practices for nitrogen fertilizers spreading Use of slow release fertilizers (urea) 			
Anaerobic treatment	- Manure valorization through anaerobic digestion			
Optimization of the herd composition	 Correct proportion of breeding and productive animals Reducing the number of unproductive animals Reduction of inputs (feeds purchase) and outputs (manure and related emissions) 			
Source of feeds	- Soybean meal origin			
Quality of feeds	- Nutritional characteristics of in-farm feeds			
Heat recovery	- Heat recovery from milk tank			

Driving parameters and normalization strategies

Mitigation action

Driving parameters

Normalization

1

Management and distribution of livestock manure and distribution of mineral fertlizers

- Rigid lid or roof
- Shallow injection manure, closed slot (> 15 cm)
- Injection of fertilizer into the soil
- Kg N from urea

% reduction of NH3 emissions

- Rigid lid or roof = 80%
- Closed slot = 85%
- Injection = 90%
- 20% reduction of N from urea
- Purchasing
- Yield increase [ton/ha]

2

Anaerobic treatment

- % digestate management

- MCF Anaerobic digester = 1%
- EF3 Anaerobic digester = 0.0006
- FracGasm digested = 7%

3

Tough

Get

Optimization of the herd composition

- Dry period = 60 days
- Age at first calving = 24 months
- Average number of lactations per cow = 2.8
- Calving interval = 376 days
- Average number of calving per year = 0.97
- % of female calves born per year = 0.5 %

- New herd composition
- Feeds purchase
- Manure production
- Enteric fermentation

- ...

Parametri e strategie di normalizzazione

Mitigation measures: % reduction

63 Dairy farms

4 representative farms

1

	Q1	Q2	Q3	Q4	Range reduction
Management and distribution fertilizers	-6%	-6%	-3%	-7%	3÷7
Anaerobic treatment	-7%	-9%	-3%	-7%	3÷9
Optimization of the herd composition	_	-5%	0.09%	-2%	2÷5
Source of feeds	0.22%	1%	0.45%	0.5%	-
Quality of feeds	-2%	-3%	-2%	-1%	1÷3
Heat recovery	_	-3%	-0.01%	-0.01%	0.01÷3

Results: efficiency measures

Harder Easier Higher potential Anaerobic treatment Manure storage Manure distribution Mineral fertilizers distribution improvement **Environmental** _ower Quality of feeds Optimization of the herd composition potential Source of feeds Heat recovery

Thank you for your attention

federico.froldi@unicatt.it

lucrezia.lamastra@unicatt.it

maurizio.moschini@unicatt.it

